La₈Ru₄O₂₁: A Mixed-Valence Ternary Ruthenium Oxide of a New Hexagonal Structure Type

F. A. COTTON* AND C. E. RICE

Department of Chemistry, Texas A&M University, College Station, Texas 77843

Received September 19, 1977

Crystals of the title compound were obtained by reaction of La₂O₃, RuO₂, and NaClO₃ in a KCl melt at 950°C under vacuum. La₈Ru₄O₂₁ forms hexagonal crystals, space group $P6_3cm$; a = 9.885(2), c = 10.805(2) Å; V = 914.3(5) Å³; Z = 2. Single crystal X-ray intensity data were collected on an automated diffractometer using graphite monochromated MoKa radiation. Using 486 unique reflections ($6^{\circ} \le 2\theta \le 60^{\circ}$), the structure has been refined to a conventional R = 0.027 ($R_w = 0.031$). The significant motif in this new structure is the Ru₄O₂₁²⁴⁻ group with 3m symmetry, composed of a central RuO₆ octahedron that shares three mutually *cis* oxygen atoms with adjacent RuO₆ octahedra. The mean ruthenium oxidation number is 4.5, but the averaged Ru–O distances for the two types of ruthenium atom, Ru(1), 1.96 Å and Ru(2), 1.98 Å, provide no support for the assignment of integral oxidation states to individual Ru ions. It is proposed that there is extensive delocalization of $d\pi$ electrons across the bridging oxygen atoms.

Introduction

A limited number of ternary ruthenium oxides containing lanthanide ions have been reported. These include the cubic pyrochlores $Ln_2Ru_2O_7$ (1-3) (Ln = Pr-Lu; Y), the orthorhombic perovskite LaRuO₃ (4) and $La_4Ru_6O_{19}$ (5), which is isostructural with $La_4Re_6O_{19}$ (6) and has a cubic structure related to KSbO₃. However, no lanthaniderich ternary ruthenium oxides have been made. By contrast, a large number of ternary rhenium oxides with Ln: Re ratio greater than unity are known, several of which exhibit considerable Re-Re bonding. For example, the $\text{Re}_2O_8^{8-}$ structural units in $\text{La}_4\text{Re}_2O_{10}$ (7) bear a striking resemblance to the $Re_2Cl_8^{2-}$ ions in $K_2Re_2Cl_8 \cdot 2H_2O$ (8), both in configuration and short Re-Re distance (2.259 vs 2.24 Å, respectively). Re and Ru have similar ionic radii in their various oxidation states and in many cases form isomorphous oxides.

*Author to whom correspondence should be addressed.

Therefore we undertook to determine whether some of the lanthanide-rich lanthanide ruthenium oxides might also exhibit strong metal-metal bonding. In our exploration of the lanthanum ruthenium oxide system we have synthesized and determined the crystal structure of $La_8Ru_4O_{21}$, a new mixed-valence oxide crystallizing in a previously unknown type of hexagonal structure. Though this compound contains no direct Ru-Ru bonding, there is evidence to suggest the presence of indirect interactions between the ruthenium cations via oxygen atoms bridging the metals.

Experimental

All starting materials were reagent grade chemicals and, with the exception of La_2O_3 , were used without further purification. La_2O_3 was roasted in air at 800°C for several hours, cooled under an inert atmosphere, and weighed quickly to avoid contamination with hydroxide or carbonate. **Preparation.** Ruthenium(IV) oxide (0.100 g), lanthanum(III) oxide (0.245 g), NaClO₃ (0.0065 g), and about 3 g of KCl were loaded into a Vycor tube (14-mm diameter \times 10 cm long), which was then evacuated and sealed. The reaction tube was heated at 950°C for 2 days, allowed to cool to 700°C over a period of 12 hr, then quenched to room temperature. Excess alkali halide was removed from the reaction mixture by leaching with water.

The product thus obtained was not homogeneous, containing several distinguishable crystalline phases. The compound chosen for this study was present chiefly as thin black hexagonal plates, along with a few approximately hemispherical crystals having one large hexagonal face. Because it was difficult and tedious to separate out enough of this compound for chemical analysis, single-crystal Xray diffraction was used to identify the phase. Attempts at grinding a spherical crystal were unsuccessful, so one of the hemispherical crystals of approximate diameter 0.18 mm was mounted for X-ray study.

A two-probe resistance measurement on a single crystal of $La_8Ru_4O_{21}$ showed it to be an insulator.

The other crystalline phases obtained from the reaction mixture are now under study.

X-ray data collection. All data were collected at room temperature on a Syntex P1 diffractometer automated using MoKa radiation monochromatized with a graphite crystal in the incident beam. The automatic centering and autoindexing procedures have been described elsewhere (9). Preliminary photographs revealed 6/mmm Laue symmetry. The systematic absence (hh0l, $l \neq 2n$) indicated $P\bar{6}c2$, $P\bar{6}_{3}cm$, and $P\bar{6}_{3}/mcm$ as possible space groups. The principal crystallographic data are as follows: a = 9.885(2), c =10.805(2) Å; V = 914.3(5) Å³; $d_{calc} = 6.725$ for Z = 2 and a formula weight of 1851.55.

A total of 516 unique reflections with $6^{\circ} \le 2\theta \le 60^{\circ}$ were collected using the θ -2 θ scan technique, variable scan rates from 4.0 to 24.0°/min, and a scan range from $2\theta(M\circ K\alpha_1)$

 -0.8° to $2\theta(MoKa_2) + 0.8^{\circ}$. Intensities of three standard reflections measured after every significant 100 reflections showed no variations during data collection. Lorentz and polarization corrections were applied.¹ The crystal was measured with a micrometer eyepiece and a numerical absorption correction (linear absorption coefficient $\mu = 218.06$ cm^{-1}) was applied, with transmission coefficients varying from 10.89 to 23.25%.

Structure solution and refinement were successful only in the non-centrosymmetric space group $P6_3cm$ (no. 185). Patterson methods were used to solve the structure; it was necessary to locate all five crystallographically independent metal atoms, two ruthenium atoms and three lanthanum atoms from the Patterson map in order to phase satisfactorily a Fourier difference map showing the locations of the five independent oxygen atoms. Three subsequent weighted refinement cycles of the scale factor, all variable positional parameters, and isotropic temperature factors reduced the discrepancy factor $R_1 (R_1 = \sum ||F_0| - |F_c|| / |F_0|)$ to 0.045 and $R_2 (R_2 = [\sum w(|F_0| - |F_c|)^2/$ $\sum w |F_0|^2 |^{1/2}$ to 0.058. Only those 489 reflections with $F_{0} > 3\sigma(F_{0})$ were included in the refinement. The atomic scattering factors used were those of Cromer and Waber (10) for neutral atoms; anomalous dispersion terms (11) were included for all atoms. The quantity minimized in all least-squares cycles was $\sum w(|F_0| - |F_0|)^2$, with weights assigned as $w = 4F_0^2/\sigma(F_0^2)^2$, and σ was determined from counting statistics.

Attempts to refine the anisotropic temperature factors of the oxygen atoms were not successful, always resulting in some nonpositive definite thermal ellipsoids. This problem is often encountered in oxides whose very heavy metal atoms dominate the X-ray scattering; in this case the difficulty is aggravated

^t Computer programs used on a PDP 11/45 computer at the Molecular Structure Corporation, College Station, Tex., were those of the Enraf-Nonius structure determination package.

VALUES OF 1	18*F085 AND	10#FCALC						
VR H 000000000000000000000000000000000000	18 + COBS AND EOBS FCALC FCALC 993 979 91228 19228 1995 19228 1995 2952 2956 1922 2966 1922 199 1922 199 2015 199 1922 199 2015 199 1922 199 2015 199 1922 199 2015 199 2	10#FC L 88200000000000000000000000000000000000	F085 FCALC 2320 2355 1817 1822 1817 1306 1291 1307 1293 1407 1759 401 1975 2915 1984 1787 1984 1977 4057 2015 1957 2915 2915 29927 2916 1572 1984 1572 2015 1976 1985 12572 1566 1846 1857 12574 1984 12753 18056 12572 18056 12572 18056 12572 18056 12572 18056 12572 21365 21196 22085 2528 22092 2586 2134 12594 12594 12594 12594 12594 12594 12594	L 14794567898140748478478478478478487848478484844444444	FORE FCALC 2432 2432 1500 1485 1216 1178 1455 1444 1631 1230 1631 1230 1637 1230 1637 1230 1637 1230 1637 1230 1637 1230 1637 1230 1637 1366 16375 1424 1637 1263 1637 1263 1637 1263 1637 1263 1776 1789 1366 1362 1451 1469 1451 1469 1451 1469 1366 1362 1366 1362 1386 1677 1422 1443 1561 1376 1562 1572 1562 1572 16864 8001 1565	K L F0BS F1 1 5 5 1461 1 5 5 1461 1 5 5 1461 1 5 7 13263 1 5 7 13253 1 5 7 14253 1 5 7 14365 1 5 7 14365 1 5 7 14365 1 5 7 14365 1 5 7 14365 1 5 5 12 1 5 5 14365 1 5 5 14365 1 5 5 14365 1 1 5 14365 1 1 13384 14367 1 1 13389 13884 1 1 13389 13887 1 1 <td< td=""><td>CALC H K L C651 1 9 3 I2266 1 9 9 I356 1 9 9 I2266 1 9 9 I356 1 19 9 I356 1 19 9 I112 2 1 10 I356 1 10 2 I356 1 10 2 I356 1 10 2 I357 1 100 7 I310 1 11 1 I310 1 100 7 I310 1 100 100 I310</td><td>FOBS FCALC 572 571 1613 1647 1431 1487 1355 445 1167 1326 1167 1325 1237 1326 1167 1326 1241 1232 1244 1232 1224 1224 1224 1224 1224 1246 669 664 1116 1376 904 938 11660 1375 1362 1341 1460 18721 1316 1470 1431 1452 1336 1460 1351 1460 1353 1366 1353 1366 1353 1366 1353 1465 1431 1452 1353 1366 1362 1375 1362 1376 13750</td></td<>	CALC H K L C651 1 9 3 I2266 1 9 9 I356 1 9 9 I2266 1 9 9 I356 1 19 9 I356 1 19 9 I112 2 1 10 I356 1 10 2 I356 1 10 2 I356 1 10 2 I357 1 100 7 I310 1 11 1 I310 1 100 7 I310 1 100 100 I310	FOBS FCALC 572 571 1613 1647 1431 1487 1355 445 1167 1326 1167 1325 1237 1326 1167 1326 1241 1232 1244 1232 1224 1224 1224 1224 1224 1246 669 664 1116 1376 904 938 11660 1375 1362 1341 1460 18721 1316 1470 1431 1452 1336 1460 1351 1460 1353 1366 1353 1366 1353 1366 1353 1465 1431 1452 1353 1366 1362 1375 1362 1376 13750
	F085 FCALC 1125 11337 1640 11657 19322 11666 11025 11057 19322 11066 2066 20877 1372 1090 2066 20877 1370 1100 2066 20877 1370 1100 2066 20877 1370 1100 2066 20877 1170 1100 20861 20863 20862 20877 11620 11623 11620 11624 11620 11624 11620 11624 11620 11642 11864 16555 1171 11787 11891 24865 2473 9186 6538 6602 6543 4927 11121 11787 11289 24667 25468 4488	L 60_0_0	FOBS FCALC 334 264 1471 1612 7471 1627 1543 1658 5777 1545 1373 1378 1498 4314 448 4314 448 4314 498 434 498 434 498 434 498 434 448 434 431 434 438 444 439 434 431 448 434 434 431 449 431 449 525 352 987 1619 987 1619 987 2127 910 9352 2034 2127 2127 1454 12234 1226 2239 3644 1231 1218 12324 1227 </td <td> เรียงสามารถานายายายายายายายายายายายายายายายายายายา</td> <td>FOBS FCALC 1123 1128 1273 1128 1273 1699 7795 7795 471 447 727 1288 4400 354 727 1716 400 354 722 1288 400 354 728 1288 400 354 1242 1288 2499 2234 1392 12359 1242 1266 1392 1671 1392 1671 1393 1671 1394 1344 1499 1671 1399 1671 1436 1499 1496 1499 1496 1499 1496 1499 1496 1499 1496 1499 1496 1492 1349 13449 1498</td> <td>K L F085 F 8 9 9 9 9 1 1892 8 9 9 9 6 640 1 1892 9 9 9 9 6 640 1 1892 1 1892 1892 1 1892 1 1892 1 1 19 7 1 1 7 1 <td< td=""><td>L L Z 3 5 6 7</td><td>FDBS FCALC 1140 1180 5929 7621 1357 1376 1357 657 1429 1451 987 781 987 781 987 1931 9312 1242 1931 1962 9312 1375 9317 93142 9312 19351 9317 19251 9317 19373 9317 19251 13735 13735 1324 1873 9317 19251 13261 1874 1822 1375 9317 19251 13241 1874 18261 1874 18276 13975 9316 1894 18266 1897 13233 539 13234 1298 13246 1874 13273 4356</td></td<></td>	 เรียงสามารถานายายายายายายายายายายายายายายายายายายา	FOBS FCALC 1123 1128 1273 1128 1273 1699 7795 7795 471 447 727 1288 4400 354 727 1716 400 354 722 1288 400 354 728 1288 400 354 1242 1288 2499 2234 1392 12359 1242 1266 1392 1671 1392 1671 1393 1671 1394 1344 1499 1671 1399 1671 1436 1499 1496 1499 1496 1499 1496 1499 1496 1499 1496 1499 1496 1492 1349 13449 1498	K L F085 F 8 9 9 9 9 1 1892 8 9 9 9 6 640 1 1892 9 9 9 9 6 640 1 1892 1 1892 1892 1 1892 1 1892 1 1 19 7 1 1 7 1 <td< td=""><td>L L Z 3 5 6 7</td><td>FDBS FCALC 1140 1180 5929 7621 1357 1376 1357 657 1429 1451 987 781 987 781 987 1931 9312 1242 1931 1962 9312 1375 9317 93142 9312 19351 9317 19251 9317 19373 9317 19251 13735 13735 1324 1873 9317 19251 13261 1874 1822 1375 9317 19251 13241 1874 18261 1874 18276 13975 9316 1894 18266 1897 13233 539 13234 1298 13246 1874 13273 4356</td></td<>	L L Z 3 5 6 7	FDBS FCALC 1140 1180 5929 7621 1357 1376 1357 657 1429 1451 987 781 987 781 987 1931 9312 1242 1931 1962 9312 1375 9317 93142 9312 19351 9317 19251 9317 19373 9317 19251 13735 13735 1324 1873 9317 19251 13261 1874 1822 1375 9317 19251 13241 1874 18261 1874 18276 13975 9316 1894 18266 1897 13233 539 13234 1298 13246 1874 13273 4356
L 200-0000000000000000000000000000000000	FUGS FCALC 347 402 410 358 558 558 558 558 569 719 2043 201 1229 1224 1229 1224 1229 129 1023 1016 497 530 497 530 497 530 497 532 498 5355 752 761 1199, 124							

by the necessarily approximate nature of the absorption correction used. Therefore the anisotropic thermal parameters were refined for the metal atoms only. Three cycles of leastsquares refinement of the scale factor, isotropic extinction parameter s ($F_{corr} = F_c/(1 + T_c)$ sI_c)), all variable positional parameters and thermal parameters produced $R_1 = 0.031$, and $R_2 = 0.033$. Three reflections (006, 030, and 113) were very strongly affected by extinction and were given zero weight, giving $R_1 = 0.028$ and $R_2 = 0.032$. Changing the enantiomorphic specification by reversing the signs of the imaginary anomalous dispersion terms further reduced R_1 to 0.027 and R_2 to 0.031. Final shifts in the parameters were less than 10% of the estimated standard deviations of the individual parameters. A final difference Fourier synthesis revealed no peaks greater than $2e^{-}/A^{3}$. The esd of an observation of unit weight was 1.92; the final value of the extinction parameter s was $4.0(1) \times 10^{-7}$. Values of observed and calculated structure factors are listed in Table I. Positional and thermal parameters for the atoms and their esd's (estimated standard deviations) are shown in Table II. These atomic positions along with the variance-covariance matrix

were used to calculate the interatomic distances and angles listed in Table III.

Results

The structure of $La_8Ru_4O_{21}$ is shown in projection on the a-b plane in Fig. 1; a perspective drawing emphasizing the linkages of the ruthenium coordination octahedra is shown in Fig. 2. The structure can be described in terms of discrete assemblies of four RuO₆ octahedra linked by corners to form $Ru_4O_{21}^{24-}$ units, with lanthanum ions coordinated between these clusters.

The main structural motif of this compound, the $Ru_4O_{21}^{24-}$ cluster, is shown in detail in Fig. 3. The cluster has $3m(C_{3\nu})$ symmetry and contains a unique Ru(1) atom on a site of 3 m symmetry and three equivalent Ru(2) atoms lying on mirror planes. Both kinds of ruthenium atoms are surrounded by octahedra of oxygen atoms with Ru-O distances ranging from 1.92(1) to 2.03(1) Å, and cis-O-Ru-O angles from 84.4(3) to $99.8(3)^{\circ}$. The average Ru–O distances for Ru(1) and Ru(2) are approximately the same (1.96 and 1.98 Å, respectively). The O(1) atoms form bridges between the ruthenium atoms so that Ru(1)

	Positional and Thermal Parameters and their Estimated Standard Deviations ^a								
Atom	x	у	Z	β ₁₁	β ₂₂	β ₃₃	β ₁₂	β_{13}	β ₂₃
La(1)	0.3333 ^b	0.6667	0.3831(1)	0.00158(11)	0.00158	0.00127(8)	0.0016	0.0	0.0
La(2)	0.2420(1)	0.0	0.2321(1)	0.00207(8)	0.00147(9)	0.00190(6)	0.0015	-0.0017(2)	0.0
La(3)	0.6028(1)	0.0	0.0930(1)	0.00192(8)	0.00269(9)	0.00097(6)	0.0027	-0.0007(2)	0.0
Ru(1)	0.0	0.0	0.0	0.0010(2)	0.0010	0.00049(16)	0.0010	0.0	0.0
Ru(2)	0.6449(1)	0.0	0.4017(1)	0.0011(1)	0.0014(1)	0.00067(7)	0.0014	0.0001(2)	0.0
O(1)	0.8404(13)	0.0	0.3854(13)	0.7(2) ^c					
O(2)	0.8457(13)	0.0	0.1081(13)	0.7(2)					
O(3)	0.4364(8)	0.2730(9)	0.2700(8)	0.3(1)					
O(4)	0.5461(10)	0.7019(9)	0.0348(9)	0.9(1)					
O(5)	0.4415(13)	0.0	0.3754(13)	0.5(2)					

TABLE II

^a The form of the anisotropic thermal parameter is $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{32}l^2 - \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)]$. Numbers in parentheses are estimated standard deviations in the last significant digits.

^b Entries with no esd's are fixed by the symmetry of the space group.

^c Isotropic B's.

TABLE	Ш
-------	---

Distances	(Á)	Angles (deg	;)
$\frac{1}{\operatorname{Ru}(1) - \operatorname{O}(1)(\times 3)}$	2.01(1)	O(1)-Ru(1)-O(1)'	85.9(4)
-O(2)(×3)	1.92(1)	O(1)-Ru(1)-O(2)	179.3(5)
Ru(2)–O(1)	1.94(1)	O(1)-Ru(1)-O(2)'	93.6(3)
-O(3)(×2)	2.00(1)	O(2)-Ru(1)-O(2)'	86.9(4)
-O(4)(×2)	1.97(1)	O(1)-Ru(2)-O(3)	86.2(3)
-O(5)	2.03(1)	O(1)-Ru(2)-O(4)	99.8(3)
$La(1) - O(3)(\times 3)$	2.382(6)	O(1)-Ru(2)-O(5)	166.8(4)
-O(4)(×3)	2.549(7)	O(3)-Ru(2)-O(3)'	89.0(4)
-O(5)(×3)	2.913(2)	O(3)-Ru(2)-O(4)	92.6(2)
$La(2)-O(1)(\times 2)$	2.680(7)	O(3)-Ru(2)-O(5)	84.4(3)
-O(2)(×2)	2.488(6)	O(4)-Ru(2)-O(4)'	85.1(4)
-O(3)(×2)	2.441(6)	O(4)-Ru(2)-O(5)	89.9(3)
-O(4)(×2)	2.842(7)		
-O(5)	2.508(10)	Ru(1)-O(1)-Ru(2)	136.7(6)
La(3)-O(2)	2.407(10)		
-O(3)(×2)	2.407(6)		
-O(4)(×2)	2.783(7)		
–O(4)′(×2)	2.683(7)		
-O(5)	2.391(10)		

INTERATOMIC DISTANCES AND ANGLES

FIG. 1. A projection of the $La_8Ru_4O_{21}$ structure on the *a*-*b* plane. Half the atoms in the unit cell are shown. Small open circles: La; small closed circles: Ru; large circles: O atoms. Heights are given as fractions of the *c* axis.

shares three mutually *cis*-oxygen atoms with the Ru(2) atoms. The Ru(1)–O(1)–Ru(2) angle is 136.7(6)°, and the closest approach between ruthenium atoms is 3.67 Å. The two Ru₄O₂₁²⁴⁻ clusters in the unit cell are related by the 6_3 symmetry operation, and the shortest Ru-Ru distance between clusters is 5.40 Å.

The three crystallographically distinct lanthanum ions lie between the ruthenium clusters. Two of them (La(2) and La(3))

FIG. 2. A perspective view of the $La_8Ru_4O_{21}$ structure, with the *c* axis approximately vertical. The octahedra represent RuO_6 units, the open circles La ions.

FIG. 3. The $Ru_4O_{21}^{24-}$ structural unit. The threefold axis of the cluster is approximately vertical.

interleave the $Ru(2)O_6$ octahedra along the ac faces, while La(1) fills in the tunnels between clusters down the three fold axes along $(\frac{1}{4}, \frac{2}{3}, z)$ and $(\frac{2}{3}, \frac{1}{3}, z)$. The lanthanum coordination geometries are typical of those found in many La oxides and complex oxides; the O-La-O angles are unremarkable and were not listed in Table III in the interest of brevity. La(1), lying on a threefold axis, has six closely coordinated oxygens at distances of 2.382(6) and 2.549(7)A, and three much longer La-O contacts at 2.913(2) A; these nine oxygen atoms form a very distorted tricapped trigonal prism. La(2) and La(3) each lie on a mirror plane. La(2) is coordinated by nine oxygen atoms at distances from 2.441(6) to 2.842(7) Å, while La(3) is eight-coordinate with La-O distances from 2.391(10) to 2.783(7) Å.

Discussion

 $La_8Ru_4O_{21}$ is the first lanthanide-rich lanthanide ruthenium oxide to be described. Its

structure appears to be unprecedented, resembling no other known oxide, halide, or silicate structure; so far as we are aware, even its space group ($P6_3cm$) is but rarely encountered. La₈Ru₄O₂₁ is also the first mixed-valence ruthenium oxide found to contain finite groupings of ruthenium atoms rather than an infinitely extended arrangement of joined metal coordination polyhedra.

Assuming that the lanthanum ions are present in their normal tripositive state, the mean oxidation number for the ruthenium atoms in $La_8Ru_4O_{21}$ is 4.5. This nonintegral average oxidation state brings up the question of how charge is distributed among the individual ruthenium atoms. Can we justify an assignment of two different, integral oxidation states for Ru(1) and Ru(2)? Since there are three Ru(2) atoms for every Ru(1), reasonable schemes, i.e., those employing only common oxidation numbers, for assigning integral oxidation states to the metals are few. Indeed, there are only two sets of reasonable oxidation numbers totaling +18: 3(+4) + (+6) and 3(+5) + (+3). However, even these schemes do not appear to pass additional tests of reasonableness. Thus, octahedrally coordinated Ru(VI) does not appear to be previously known in any oxide system, and both possibilities require the unlikely circumstance that two ruthenium atoms that differ by two units in oxidation number be bound to the same oxygen atoms and have the same coordination number.

Some clue as to the relative oxidation states of metal atoms in metal oxides should be provided by the metal-oxygen bond distances. As mentioned before, the average Ru(1)-O and Ru(2)-O distances in La₈Ru₄O₂₁ are quite similar, namely, 1.96 and 1.98 Å, respectively. According to Shannon and Prewitt's effective ionic radii (12) and Shannon's revised radii (13) both of these values are appropriate for oxidation states in the range +4 to +5. It might be argued that the distortions in the ruthenium coordination geometries, with Ru-O distances differing by more than 0.1 Å, are so great as to make judgements based on average distances unreliable. Indeed, Shannon (13) has shown that distortions definitely influence the average M-O distance for a metal in a given oxidation state. However, by Shannon's distortion index Δ (13) the distortions in the geometries of Ru(1) and Ru(2) are of essentially the same magnitude. Therefore, distortion may be assumed to affect the two sets of Ru-O distances equally and the Ru oxidation states, whatever they are, must be approximately the same. Even though the accuracy of our Ru–O distances (esd's ~ 0.01 Å) would not warrant differentiating between metals differing in oxidation state by one unit, in this case the only possible assignments of integral oxidation

numbers require differences of two units. We therefore believe that our data argue against integral oxidation numbers and are better accommodated by postulating some form of charge delocalization.

Since in La₈Ru₄O₂₁ the ruthenium atoms are too far separated for direct metal to metal bonding, charge delocalization must be assumed to take place principally by π interactions across the Ru(1)–O(1)–Ru(2) chains. While it should be possible to develop this idea in some detail using a molecular orbital treatment, the low symmetry of the problem makes it unlikely that any firm conclusions could be reached from purely qualitative arguments. Moreover, without data on the magnetism and spectra, a quantitative computation could not be subjected to any cogent test of its validity. For these reasons we do not, at least for the present, plan to examine the electron distribution in more detail.

Acknowledgments

We would like to thank Professor R. A. Walton of Purdue University for experimental help in characterizing this compound. We thank the National Science Foundation for financial support.

References

- E. F. BERTAUT, F. FORRAT, AND M. C. MONTMORY, C. R. Acad. Sci. 249, 829 (1959).
- 2. M. C. MONTMORY AND E. F. BERTAUT, C. R. Acad. Sci. 252, 4171 (1961).
- 3. A. W. SLEIGHT AND R. J. BOUCHARD, Nat. Bur. Stand. Spec. Publ. 364, 227 (1972).
- 4. R. J. BOUCHARD AND J. F. WEIHER, J. Solid State Chem. 4, 80 (1972).
- 5. F. ABRAHAM, J. TRÉHOUX, AND D. THOMAS, Mater. Res. Bull. 12, 43 (1977).
- N. L. MORROW AND L. KATZ, Acta Crystallogr. B 24, 1466 (1968).
- 7. K. WALTERSSON, Acta Crystallogr. B 32, 1485 (1976).
- 8. F. A. COTTON AND C. B. HARRIS, *Inorg. Chem.* 4, 330 (1965).
- F. A. COTTON, B. A. FRENZ, G. DEGANELLO, AND A. SHAVER, J. Organomet. Chem. 50, 227 (1973).
- D. T. CROMER AND J. T. WABER, "International Tables for X-ray Crystallography," Vol. 4, Table 2.2B, Kynoch Press, Birmingham, England (1974).
- D. T. CROMER, "International Tables for X-ray Crystallography," Vol. IV, Table 2.3.1, Kynoch Press, Birmingham, England (1974).
- 12. R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. B 25, 925 (1969).
- 13. R. D. SHANNON, Acta. Crystallogr. A 32, 751 (1976).